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Overview

We tried to deploy the SoTA target detection algorithm on a low computing
power embedded device (Raspberry Pi 4B) to detect forest fires in real
time for small UAV applications:

» We tried to modify the original YOLOvS backbone to a lightweight
network, and restructured the whole network based on the new
backbone.

» We performed a channel pruning operation on the modified YOLO
network to make the network further compact and the network
structure more simplified.

» We overclocked the CPU of Raspberry Pi 4B at the hardware level
and investigated the effect of hardware acceleration on detection frame
rate.

» Experimental results show that the proposed YOLOvV5 has a higher
accuracy rate (MAP@0.5) than the original YOLOvVS on the same test
set, and that the detection frame rate(FPS) has been significantly
improved(1.16 FPS to FPS). o
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Comparison of Single Board Computers (SBCs)

https://www.singular.com.cy/raspberry-pi-4-
mode|_b-sing|e-board-computer_broadcom- https://developer. nVidia.Com/embedded/jetson-

bcm2711-1.5-ghz-ram-8gb.html?s|=el nano-developer-kit

After carried out a research, the mainstream single board
computer/embedded platform for deploying deep learning algorithms are

Raspberry Pi and Nvidia Jetson series.
N2
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Benchmarks

Model size objects mAP  Jetson Nano 1479 MHz  RPi 4 64-0S 1950 MHz
NanoDet 320x320 80 20.6 26.2 FPS 13.0 FPS
NanoDet Plus 416x416 80 304 18.5 FPS 5.0 FPS
YoloFastestV2 352x352 80 24.1 384 FPS 18.8 FPS
YoloV2 416x416 20 19.2 10.1 FPS 3.0 FPS
YoloV3 352x352 tiny 20 16.6 17.7 FPS 4.4 FPS
YoloV4 416x416 tiny 80 21.7 16.1 FPS 3.4 FPS
YoloV4 608x608 full 80 453 1.3 FPS 0.2 FPS
YoloV5 640x640 small 80 22.5 5.0 FPS 1.6 FPS
YoloVé 640x640 nano 80 35.0 10.5 FPS 2.7 FPS
YoloV7 640x640 tiny 80 38.7 8.5 FPS 2.1 FPS
YoloX 416x416 nano 80 25.8 22.6 FPS 7.0 FPS
YoloX 416x416 tiny 80 32.8 11.35 FPS 2.8 FPS
YoloX 640x640 small 80 40.5 3.65 FPS 0.9 FPS
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1828
Introduction 4 @



Is the Jetson nano always the better choice?

Raspberry Pl 4

Jetson Nano

Performance 13.5 GFLOPS 472 GFLOPS

CPU Quad-core ARM CortexA72 64- | Quad-Core ARM Cortex-AS57
bit @ 1.5 GHz 64-bit (@ 1.42 GHz

GPU Broadcom Video Core VI (32- NVIDIA Maxwell w/ 128 CUDA
bit) cores (@ 921 MHz

Memory 8 GB LPDDR4 4 GB LPDDR4 @ 1600MHz,

25.6 GB/s

Networking Gigabit Ethernet / WiF1 802.11ac | Gigabit Ethernet / M.2 Key E

Display 2x microHDMI (up to 4Kp60) HDMI 2.0 and eDP 1.4

USB 2x USB 3.0, 2x USB 2.0 4x USB 3.0, USB 2.0 Micro-B

Other 40-pin GPIO 40-pin GPIO

Video Encode H264(1080p3 0) H.264/H.265 (4Kp30)

Video Decode

H.265(4Kp60) ,H.264(1080p 60)

H.264/H.265 (4Kp60, 2x 4Kp30)

Camera MIPI CSI port MIPI CSI port
Storage Micro-SD 16 GB eMMC
Power under load 2.56W-7.30W SW-10W

Introduction

NVIDIA’s Jetson series
is seen as a deployment
accelerator for machine
deployment. Some deep
training applications of
Jetson Nano developers
are better evaluated
than Raspberry Pi kit. [1]

Raspberry Pi 4B is 88 x
98 x 19.5mm and 469

NVidia Jetson nano is 164
x 107 x 42mm and 241g
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Relative Works
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Wahyutama et al. implemented Yolov4 Gao et al. implemented Yolov5 in Raspberry
in Raspberry Pi and is performed at Pi and the inference speed is approximately
approximately 2 FPS in an actual 0.5 FPS for the improved beehive detect
operation scenario, resulting in an and tracking system. Published: 27 October
accuracy of 97-99%. Published: 21 April 2022
2022
Electronics 2022, 11, 1323. Journal of Biosystems Engineering
https://doi.org/10.3390/electronics11091323 https://doi.org/10.1007/s42853-022-00166-6
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Proposed optimization Framework
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Network Architecture
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The architecture of the proposed network. 1) The input is a 320 X 320 three-channel
RGB image. 2) The backbone of the proposed network is ShuffleNetV2, which can
reduces the amount of cache space occupied and increases the inference speed. 3)
The Neck network part uses a FPN + PAN architecture, with channel pruning of the
Head in order to optimise memory access and usage.
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Network Pruning
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Liu, Zhuang, et al. "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE
international conference on computer vision. 2017.

We associate a scaling factor (reused from batch normalization layers) with each
channel in convolutional layers. Sparsity regularization is imposed on these
scaling factors during training to automatically identify unimportant channels.

The channels with small scaling factor values (in orange color) will be pruned (left
side). After pruning, we obtain compact models (right side), which are then fine-
tuned to achieve comparable (or even higher) accuracy as normally trained full
network.

Al
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Sparse training and pruning preparation

Normal training Distribution after sparsity training

(a) (b)

» |t uses the scaling factors of the BN layer and associates the scaling factors with
each channel in the convolutional layer.

» A sparse regularization is applied to these scale factors during training so that the
unimportant scale factor is approximated to zero, thus automatically identifying the
unimportant channels.

« By pruning the orange channels with a scale factor close to 0, we can obtain the
compact network, which is the channel with a larger scale factor. Az
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Pruning process and Fine-tuning of the pruned model
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Before After

» After obtaining the sparse trained model, the next step is to prune out the channels
with y going to 0. This method is based on the structured pruning of the channels,
and the accuracy of the pruning will generally be reduced. We can fine-tune the
finetune of the compact network to improve its accuracy, so that it is comparable to
the normal training network, or even more accurate.

» The reduction in the accuracy after pruning can be fine-tuned to recover. When
the pruned model is able to relearn the neural network parameters based on the
current network structure, it is the fine-tuned for training and this restores the

detection accuracy of the model and improves the mapping effect.
Al
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Hardware Acceleration

Clock Max temp. Power Preformance
(MH2) Overvoltage Veore (C|F) (Watt) increase Remarks
0 0 0.8625 1.5 RPi 4 shut down
200 0 0.8625 1.75 RPi 4 min working clock
600 0 0.8625 2.8 RPi 4 running idle
1500 0 0.8625 821180 7 Factory settings
1600 1 0.8875 801176 7.6 6.6 %
1700 2 0.9125 781172 8.3 13.3%
1800 3 0.9375 771170 8.9 20%
1900 4 0.9625 751167 9.5 26.6 %
2000 6 1.0125 721162 11 333%
2100 6 1.0125 721162 11 40 %
7 1.0375 56132 11.7 no improvement
8 1.0625 501122 12.3 no improvement

In order to get the best performance out of the algorithms, the RPi4B
CPU was overclocked to 2.0 GHz (maximum of 2140 MHz).

As the RPi is normally used with a CPU with its NEON-ARM
instructions, the GPU was not overclocked for this study and its
default frequency, 500 MHz was used (maximum of 650 MHz).

To avoid overheating of the RPi platform, automatic over-voltage
adjustment and dynamic clock frequency were used. Al
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Dataset

The dataset was
randomly divided
into three
independent and
equally distributed
sets:

(i) the Training set,
containing 83% of
the images (20,255);

(ii) the Validation set,
containing 13% of
the images (3,148);

(iii) the Test set,

containing 4% of the
images (977).

Some examples of the dataset: (a) and (b) show image-based data augmentation
techniques to expand the dataset. (c) and (d) show respective ground-truth bounding
boxes. (e€) and (f) represent images that are prone to false detection. (g) is a ground-

based image of the forest fire and (h) is an aerial view of the fire. A

1828
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Comparison of models’ performances on Prediction

TABLE 1
PERFORMANCE METRICS ON THE TEST SET

Network mAP@0.50 AP@050 AP@0.50 Fy avg lolU

(%%) smoke (%) fire (%) SCore (%)
YOLOwS 82.93 01.17 74.86 0.83 73.51
Proposed 02.54 06.35 88.71 0.85 H8.34

The optimised YOLOvVS outperforms the original YOLOv5 across most of the
evaluation metrics.

However, the location of objects detected by the original YOLOv5 network is on
average more accurate in terms of loU experimental values. This is because
the original YOLOVS retains more convolutional layers than the optimised
network

Al
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Analysis of the model pruning results

TABLE 11
PARAMETER COMPARISON OF THE PROPOSED DETECTION MODEL UNDER
DIFFERENT PRUNING RATES.

Pruning Rate(%) mAP@0.5(%) Parameters/10® Model Size(MB)

Baseline VEN 702 14.1
=0 823 0.89 1.95
70 80.7 1.54 3.34
60 01.2 2.30 4.64
50 03.2 2.85 5.66

Parameter comparison of the proposed detection models for different
channel pruning rates are tabulated on Tab. Il, According to Tab. Il, all 4-
evaluation metrics were reduced for different channel pruning rates. After
performing fine-tuning training, the mAP recovered to 84.87%, 92.5%,
92.65% and 93.41% respectively.

Fine-tuning revealed that the channel pruning rate of 70% achieved the best
balance between accuracy and inference speed, which resulted in a better
model compression with less loss of average accuracy. N2
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Network Structure Comparison
The pruning rules refer to the design guidelines of ShuffleNet v2.

shape (5.

output

Original Yolov5 Head Optimized Yolov5 Head

Al
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Overclocking Performance Comparison

PERFORMANCE METRICS ON THE COMPARISON EXPERIMENT

TABLE III

Network  Clock Speed Power CPU Usage CPU Temp  FPS
(GHz) (W) (%) (°C)
YOLOV5 0.6 5.70 93 47 0.41
YOLOWV5 1.8 1.70 95 58 1.06
YOLOV5 2.0 8.10 97 67 1.16
Proposed 0.6 5.20 60 43 3.02
Proposed 1.8 7.02 58 47 7.23
Proposed 2.0 1.28 64 50 8.57

Performance of the Raspberry Pi 4B at Different Overclocked Frequencies

Evaluation and Experimental Results

17
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Detection results from the Comparison Experiment
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The detection results show that the proposed YOLOvS can mark out more areas
where flames and smoke are present in the pictures and there are no false
detections in pictures with flame-like objects. N2
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Detection Results on Raspberry Pi Platform

FPS: 8.21 FPS: 8.43 FPS: 8.86
fire 0.86

fire 0,.790.58

A B, fire 056

Evaluation on the Raspberry Pi platform: the detection result of the image
obtained in real time from the web camera, with the live detection frame rate
in the top left corner of the detection screen.

Al
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Video input Results for testing the model performance

fire 0.74;re 0. . L
¢ o o.fire 0.58 A video of the California

fires [2] was obtained
from the internet and the
results of flame and
smoke detection using
fire 0.58 the optimized model
show that the model can
still detect the location of
the flames even in a
smoke-filled scene and

fire 0.61

et & mark the location of the
| flames when the camera
fire 0.51 is zoomed out.

b
" B
- Az
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Conclusion

» The optimized YOLOV5 produced the highest mAP of
92.5% compared to the ordinary YOLOv5s model and could
detect at 7-9 FPS on the RPi-4B.

»The optimized model use 35% less CPU usage than the
original YOLOVS.

»The reduced CPU usage also translated to 25% reduction
iIn CPU temperature.

»The deployment approach in this study reduces the

difficulty of deploying the deep-learning fire detection
model on edge devices.

Al
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Questions

Conclusion
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1828

O



Reference

1. P. Howard, “The Cost of Carbon Project - Flammable Planet: Wildfires and the
Social Cost of Carbon”, Institute of Policy Integrity, NY University, School of Law,
2014.

2. https://medium.com/@anil.ozenn/jetson-nano-vs-raspberry-pi%CC%87-4-
b1f6fbf5a00e

3. https://'www.youtube.com/watch?v=0k7ipkU6gHw&ab channel=CBS8SanDiego

Al

1828
Reference

O



Replacement of the Backbone Network

e Computational complexity and parameter storage
have a negative impact on the speed of CNN networks
which can be extremely slow when running on
computational- and power constrained devices.

e The current state-of-the-art lightweight network
ShuffleNetV2 is an improved version based on
ShuffleNet. ShuffleNetV2 is faster and more accurate
than most other networks for the same complexity of
inference. Hence, it is ideal for replacing the ordinary
YOLOV5 backbone network.

Al
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The selection process of the Backbone

We try to replace the backbone feature extraction network with the lighter

ShuffleNetV2 network to achieve a lightweight network model that balances speed and
accuracy.

Backbone mAP

cspdarknet

shufflenetv2 -2.1%

mobilenetv2 -3.8%

ghostnet -1.2%

https://blog.csdn.net/hexiao260/article/details/124915149

This blog documents the process of deploying the target detection algorithm to an embedded device (jetson
nano) and some modification strategies to lighten and improve the accuracy of the YOLOv4 algorithm.

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design https://arxiv.org/abs/1807.11164

Al
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YOLOvV5 Algorithm
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https://www.analyticsvidhya.com/blog/2021/12/how-to-use-yolo-v5-object-
detection-algorithm-for-custom-object-detection-an-example-use-case/

Backup slides

As the current state-of-
the-art deep learning
target detection
algorithm, YOLOV5, has
gathered a large number
of tricks, but there is still
room for improvement
and enhancement, and
different improvement
methods can be used for
the detection difficulties
of specific application
scenarios.

The next section will focus
on how we made
improvements to YOLOvS
in detail.
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Change the backbone (1/2)

class ShuffleNetV2_InvertedResidual(nn.Module}:

def _tntt_( First step is to modify common.py and add
the ShuffleNetV2 module.

oup: int,
stride: int
)} -» None:
super(ShuffleNetV2_InvertedResidual, self)._ init_ ()

if not (1 <= stride <= 3):
raise ValueError('illegal stride value')
self.stride = stride

branch_features = oup // 2

if self.stride » 1:
self.branchl = nn.Segquential(
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
nn.BatchNorm2d{inp),
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=e, bias=False),
nn.BatchNorm2d{branch_features),
nn.ReLU({inplace=True),
)
else:

self.branchl = nn.Sequential()

self.branch2 = nn.Seguential(
nn.Conv2d(inp if (self.stride » 1) else branch_features,
branch_features, kernel size=1, stride=1, padding=8, bias=False),
nn.BatchNorm2d (branch_features),
nn.RelLU{inplace=True),
self.depthwise_conv(branch_features, branch_features, kernel size=3, stride=self.stride, padding=1),
nn.BatchNorm2d (branch_features),
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=8, bias=False),
nn.BatchNorm2d (branch_features),

nn.ReLU(inplace=True),

) Az
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Change the backbone (2/2)
Step 2: Register the module ShuffleNetV2 in yolo.py.

If m in [Conv,MobileNetV3 InvertedResidual,ShuffleNetV2_InvertedResidual]

Step 3: Modify the yaml file

1 | backbone:

2

3 [[-1, 1, Focus, [64, 3]],

4 [-1, 1, ShuffleNetv2 InvertedResidual, [128, 2]],

5 [-1, 3, ShuffleNetv2 InvertedResidual, [128, 1]],

6 [-1, 1, ShuffleNetVv2 InvertedResidual, [256, 2]],

7 [-1, 7, ShuffleNetV2 InvertedResidual, [256, 1]],

8 [-1, 1, ShuffleNetv2 InvertedResidual, [512, 2]],

9 [-1, 3, ShuffleNetv2 InvertedResidual, [512, 1]],

10 ]
NZ
1828
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Deployment on Raspberry Pi Platform

Onmxruntime -'p -'p Hardware

Advanced
Scripting
Languages
TensorRT
Runtime
onnx expression Openvino

e To achieve running deep learning algorithms on Raspberry Pi in real time, we transform
the PyTorch model obtained after the training of the improved Yolov5 algorithm into the
ONNX cross-frame model intermediate expression model.

e The quantized model is then run in the onnxruntime framework for testing the
performance of the fire detection algorithm.

e After completing the evaluation, the onnxruntime framework and the completed
guantization model are deployed to the Raspberry Pi 4B to run the fire detection
algorithm. N2
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