-

The 31T Mediterranean Conference on Control and Automation

M C A June 26 — 29, 2023 | GrandResort Limassol, Cyprus

A CNN based Real-time Forest Fire
Detection System for Low-power
Embedded Devices

Jianlin Ye*, Stelios loannou*t, Panagiota Nikolaou®, Marios Raspopoulos*t
*University of Central Lancashire, Pyla, Larnaca, Cyprus
tINterdisciplinary Science Promotion & Innovative Research Exploration (INSPIRE)
jve9@uclan.ac.uk, sioannou2@uclan.ac.uk, pnikolaoul@uclan.ac.uk, mraspopoulos@uclan.ac.uk

N
University of
Central Lancashire
@ UCLan Cyprus inspire

& Innovative Research Exploration

Al

1828

O

mailto:jye9@uclan.ac.uk
mailto:sioannou2@uclan.ac.uk
mailto:pnikolaou1@uclan.ac.uk

Overview

We tried to deploy the SoTA target detection algorithm on a low computing
power embedded device (Raspberry Pi 4B) to detect forest fires in real
time for small UAV applications:

» We tried to modify the original YOLOvS backbone to a lightweight
network, and restructured the whole network based on the new
backbone.

» We performed a channel pruning operation on the modified YOLO
network to make the network further compact and the network
structure more simplified.

» We overclocked the CPU of Raspberry Pi 4B at the hardware level
and investigated the effect of hardware acceleration on detection frame
rate.

» Experimental results show that the proposed YOLOvV5 has a higher
accuracy rate (MAP@0.5) than the original YOLOvVS on the same test
set, and that the detection frame rate(FPS) has been significantly
improved(1.16 FPS to FPS). o

1828
Introduction 2 @

Comparison of Single Board Computers (SBCs)

https://www.singular.com.cy/raspberry-pi-4-
mode|_b-sing|e-board-computer_broadcom- https://developer. nVidia.Com/embedded/jetson-

bcm2711-1.5-ghz-ram-8gb.html?s|=el nano-developer-kit

After carried out a research, the mainstream single board
computer/embedded platform for deploying deep learning algorithms are

Raspberry Pi and Nvidia Jetson series.
N2

1828
Introduction 3 @

Benchmarks

Model size objects mAP Jetson Nano 1479 MHz RPi 4 64-0S 1950 MHz
NanoDet 320x320 80 20.6 26.2 FPS 13.0 FPS
NanoDet Plus 416x416 80 304 18.5 FPS 5.0 FPS
YoloFastestV2 352x352 80 24.1 384 FPS 18.8 FPS
YoloV2 416x416 20 19.2 10.1 FPS 3.0 FPS
YoloV3 352x352 tiny 20 16.6 17.7 FPS 4.4 FPS
YoloV4 416x416 tiny 80 21.7 16.1 FPS 3.4 FPS
YoloV4 608x608 full 80 453 1.3 FPS 0.2 FPS
YoloV5 640x640 small 80 22.5 5.0 FPS 1.6 FPS
YoloVé 640x640 nano 80 35.0 10.5 FPS 2.7 FPS
YoloV7 640x640 tiny 80 38.7 8.5 FPS 2.1 FPS
YoloX 416x416 nano 80 25.8 22.6 FPS 7.0 FPS
YoloX 416x416 tiny 80 32.8 11.35 FPS 2.8 FPS
YoloX 640x640 small 80 40.5 3.65 FPS 0.9 FPS

/2
1828
Introduction 4 @

Is the Jetson nano always the better choice?

Raspberry Pl 4

Jetson Nano

Performance 13.5 GFLOPS 472 GFLOPS

CPU Quad-core ARM CortexA72 64- | Quad-Core ARM Cortex-AS57
bit @ 1.5 GHz 64-bit (@ 1.42 GHz

GPU Broadcom Video Core VI (32- NVIDIA Maxwell w/ 128 CUDA
bit) cores (@ 921 MHz

Memory 8 GB LPDDR4 4 GB LPDDR4 @ 1600MHz,

25.6 GB/s

Networking Gigabit Ethernet / WiF1 802.11ac | Gigabit Ethernet / M.2 Key E

Display 2x microHDMI (up to 4Kp60) HDMI 2.0 and eDP 1.4

USB 2x USB 3.0, 2x USB 2.0 4x USB 3.0, USB 2.0 Micro-B

Other 40-pin GPIO 40-pin GPIO

Video Encode H264(1080p3 0) H.264/H.265 (4Kp30)

Video Decode

H.265(4Kp60) ,H.264(1080p 60)

H.264/H.265 (4Kp60, 2x 4Kp30)

Camera MIPI CSI port MIPI CSI port
Storage Micro-SD 16 GB eMMC
Power under load 2.56W-7.30W SW-10W

Introduction

NVIDIA’s Jetson series
is seen as a deployment
accelerator for machine
deployment. Some deep
training applications of
Jetson Nano developers
are better evaluated
than Raspberry Pi kit. [1]

Raspberry Pi 4B is 88 x
98 x 19.5mm and 469

NVidia Jetson nano is 164
x 107 x 42mm and 241g

Al

1828
> &)

Relative Works

I [S . +- 1 -}
| | paper 0.97 | |
e — .

T L0y b | =}
paper 0O 'ﬁ 1 3
1 | Y, g

Wahyutama et al. implemented Yolov4 Gao et al. implemented Yolov5 in Raspberry
in Raspberry Pi and is performed at Pi and the inference speed is approximately
approximately 2 FPS in an actual 0.5 FPS for the improved beehive detect
operation scenario, resulting in an and tracking system. Published: 27 October
accuracy of 97-99%. Published: 21 April 2022
2022
Electronics 2022, 11, 1323. Journal of Biosystems Engineering
https://doi.org/10.3390/electronics11091323 https://doi.org/10.1007/s42853-022-00166-6

Al

1828
Background and Related Works 6

Proposed optimization Framework

(Initial | .
| volows ||| Fnetnee
network _ P
i - 5, *
| | Good
Replace the Prunihchanl'lllels Test the Deblo
Backbone with sma performance ploy
scaling factors !
| . | E
+ Bad
Modify the Head e :
and Neck channel sparsity _ :
regularization | Muti-pass:
Dashed lines denote the iterative process.
Al

1828
Proposed Optimization 7

O

Network Architecture

Backbone Neck Prediction
""""""""""""""""""""""""" et A Attt
[! 1
[! 1
e sm s s s T o |
i - P — i : P i
1x1 t 2x3 ; L Ixd g 2x7 p Ix1 o 2x7 CBS 1| 1| Sampleing : : :
[S I N, : [S | !
1 : : ! :
o ! 1
: 1 [1 T 1 : |
1] : p I 1
: : concat i DWB > Sampleing I . : : :
Ty e—d T .
| L concat |—~ DWB —-— Conv !
T 2 1
... : tmemd 11 |
1 |1]
C 58 - —u cBr Lol DwE | | . 0x40x255 |
I SFB |= CBR —» DWB ' Channel ! i DWB e | 40 x 40 x 255 !
L1 e S [lconcat Shuffle ! (S |
se==d | poooos 1 CBL Conv BN Leaky o |
1 1 = l
! pwB i 1x1 relu e \ : ' :
1 . 1
Lo ! e i DWB ——p Conv !
! [I I
----------- R, | N |
i SFB } | slice CBRFDWB! — : S Vil 20x20x 255 |
P 2K oo '—L concat c;'ha"f?f . | ====: DWB r++ | I
,,,,,,,,,,, : 1 1] .
I usTe) | |} DWB.=—»/ CBR —» CBR (SR : ! :
R (.
i Lo :
1 o [1
! > " £ !
CBR | = | Conv | BN | ReLU CBS | = | Conv | BN | ReLU : add -LDWB_;: i CO"V' |
e T 1 :
1 ! |
1

) S

The architecture of the proposed network. 1) The input is a 320 X 320 three-channel
RGB image. 2) The backbone of the proposed network is ShuffleNetV2, which can
reduces the amount of cache space occupied and increases the inference speed. 3)
The Neck network part uses a FPN + PAN architecture, with channel pruning of the
Head in order to optimise memory access and usage.

Al

1828
Proposed Optimization 8

Network Pruning

channel scaling ') channel scalin) _
i-th conv-layer factors (i+1)5/-th i-th conv-layer Eagifors ‘ (i+1)=/-th

= conv-layer — conv-layer
@ 1.170¥ y ey — (@ 1.170 Y
*[i 0.001 |7
@® 029 pruning "._D ® 029
.7 0,003 |+ —_—
@ 0.5820 AT — | @ 0.820)
Foalt i
initial network compact network

Liu, Zhuang, et al. "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE
international conference on computer vision. 2017.

We associate a scaling factor (reused from batch normalization layers) with each
channel in convolutional layers. Sparsity regularization is imposed on these
scaling factors during training to automatically identify unimportant channels.

The channels with small scaling factor values (in orange color) will be pruned (left
side). After pruning, we obtain compact models (right side), which are then fine-
tuned to achieve comparable (or even higher) accuracy as normally trained full
network.

Al

1828
Proposed Optimization 9

Sparse training and pruning preparation

Normal training Distribution after sparsity training

(a) (b)

» |t uses the scaling factors of the BN layer and associates the scaling factors with
each channel in the convolutional layer.

» A sparse regularization is applied to these scale factors during training so that the
unimportant scale factor is approximated to zero, thus automatically identifying the
unimportant channels.

« By pruning the orange channels with a scale factor close to 0, we can obtain the
compact network, which is the channel with a larger scale factor. Az

1828
Proposed Optimization 10

Pruning process and Fine-tuning of the pruned model

° ®
o : Po
@ A <
o o © o
@ ®

Before After

» After obtaining the sparse trained model, the next step is to prune out the channels
with y going to 0. This method is based on the structured pruning of the channels,
and the accuracy of the pruning will generally be reduced. We can fine-tune the
finetune of the compact network to improve its accuracy, so that it is comparable to
the normal training network, or even more accurate.

» The reduction in the accuracy after pruning can be fine-tuned to recover. When
the pruned model is able to relearn the neural network parameters based on the
current network structure, it is the fine-tuned for training and this restores the

detection accuracy of the model and improves the mapping effect.
Al

1828
Proposed Optimization 11

Hardware Acceleration

Clock Max temp. Power Preformance
(MH2) Overvoltage Veore (C|F) (Watt) increase Remarks
0 0 0.8625 1.5 RPi 4 shut down
200 0 0.8625 1.75 RPi 4 min working clock
600 0 0.8625 2.8 RPi 4 running idle
1500 0 0.8625 821180 7 Factory settings
1600 1 0.8875 801176 7.6 6.6 %
1700 2 0.9125 781172 8.3 13.3%
1800 3 0.9375 771170 8.9 20%
1900 4 0.9625 751167 9.5 26.6 %
2000 6 1.0125 721162 11 333%
2100 6 1.0125 721162 11 40 %
7 1.0375 56132 11.7 no improvement
8 1.0625 501122 12.3 no improvement

In order to get the best performance out of the algorithms, the RPi4B
CPU was overclocked to 2.0 GHz (maximum of 2140 MHz).

As the RPi is normally used with a CPU with its NEON-ARM
instructions, the GPU was not overclocked for this study and its
default frequency, 500 MHz was used (maximum of 650 MHz).

To avoid overheating of the RPi platform, automatic over-voltage
adjustment and dynamic clock frequency were used. Al

Proposed Optimization

1828

12

O

Dataset

The dataset was
randomly divided
into three
independent and
equally distributed
sets:

(i) the Training set,
containing 83% of
the images (20,255);

(ii) the Validation set,
containing 13% of
the images (3,148);

(iii) the Test set,

containing 4% of the
images (977).

Some examples of the dataset: (a) and (b) show image-based data augmentation
techniques to expand the dataset. (c) and (d) show respective ground-truth bounding
boxes. (e€) and (f) represent images that are prone to false detection. (g) is a ground-

based image of the forest fire and (h) is an aerial view of the fire. A

1828
Dataset Generation and Training Procedure 13

Comparison of models’ performances on Prediction

TABLE 1
PERFORMANCE METRICS ON THE TEST SET

Network mAP@0.50 AP@050 AP@0.50 Fy avg lolU

(%%) smoke (%) fire (%) SCore (%)
YOLOwS 82.93 01.17 74.86 0.83 73.51
Proposed 02.54 06.35 88.71 0.85 H8.34

The optimised YOLOvVS outperforms the original YOLOv5 across most of the
evaluation metrics.

However, the location of objects detected by the original YOLOv5 network is on
average more accurate in terms of loU experimental values. This is because
the original YOLOVS retains more convolutional layers than the optimised
network

Al

1828
Evaluation and Experimental Results 14

O

Analysis of the model pruning results

TABLE 11
PARAMETER COMPARISON OF THE PROPOSED DETECTION MODEL UNDER
DIFFERENT PRUNING RATES.

Pruning Rate(%) mAP@0.5(%) Parameters/10® Model Size(MB)

Baseline VEN 702 14.1
=0 823 0.89 1.95
70 80.7 1.54 3.34
60 01.2 2.30 4.64
50 03.2 2.85 5.66

Parameter comparison of the proposed detection models for different
channel pruning rates are tabulated on Tab. Il, According to Tab. Il, all 4-
evaluation metrics were reduced for different channel pruning rates. After
performing fine-tuning training, the mAP recovered to 84.87%, 92.5%,
92.65% and 93.41% respectively.

Fine-tuning revealed that the channel pruning rate of 70% achieved the best
balance between accuracy and inference speed, which resulted in a better
model compression with less loss of average accuracy. N2

1828
Evaluation and Experimental Results 15

Network Structure Comparison
The pruning rules refer to the design guidelines of ShuffleNet v2.

shape (5.

output

Original Yolov5 Head Optimized Yolov5 Head

Al

1828
Evaluation and Experimental Results 16

Overclocking Performance Comparison

PERFORMANCE METRICS ON THE COMPARISON EXPERIMENT

TABLE III

Network Clock Speed Power CPU Usage CPU Temp FPS
(GHz) (W) (%) (°C)
YOLOV5 0.6 5.70 93 47 0.41
YOLOWV5 1.8 1.70 95 58 1.06
YOLOV5 2.0 8.10 97 67 1.16
Proposed 0.6 5.20 60 43 3.02
Proposed 1.8 7.02 58 47 7.23
Proposed 2.0 1.28 64 50 8.57

Performance of the Raspberry Pi 4B at Different Overclocked Frequencies

Evaluation and Experimental Results

17

Al

1828

O

Detection results from the Comparison Experiment

. AT © g
: smokg’ 93:2“ e

w4

frEN0nE, Y. k|

fﬁre 0.B3
e Wy

; % fire 0.36
2 : -

The detection results show that the proposed YOLOvS can mark out more areas
where flames and smoke are present in the pictures and there are no false
detections in pictures with flame-like objects. N2

1828
Evaluation and Experimental Results 18

Detection Results on Raspberry Pi Platform

FPS: 8.21 FPS: 8.43 FPS: 8.86
fire 0.86

fire 0,.790.58

A B, fire 056

Evaluation on the Raspberry Pi platform: the detection result of the image
obtained in real time from the web camera, with the live detection frame rate
in the top left corner of the detection screen.

Al

1828
Evaluation and Experimental Results 19

Video input Results for testing the model performance

fire 0.74;re 0. . L
¢ o o.fire 0.58 A video of the California

fires [2] was obtained
from the internet and the
results of flame and
smoke detection using
fire 0.58 the optimized model
show that the model can
still detect the location of
the flames even in a
smoke-filled scene and

fire 0.61

et & mark the location of the
| flames when the camera
fire 0.51 is zoomed out.

b
" B
- Az

1828
Evaluation and Experimental Results 20

Conclusion

» The optimized YOLOV5 produced the highest mAP of
92.5% compared to the ordinary YOLOv5s model and could
detect at 7-9 FPS on the RPi-4B.

»The optimized model use 35% less CPU usage than the
original YOLOVS.

»The reduced CPU usage also translated to 25% reduction
iIn CPU temperature.

»The deployment approach in this study reduces the

difficulty of deploying the deep-learning fire detection
model on edge devices.

Al

1828
Conclusion 21

O

Questions

Conclusion

Al

1828

O

Reference

1. P. Howard, “The Cost of Carbon Project - Flammable Planet: Wildfires and the
Social Cost of Carbon”, Institute of Policy Integrity, NY University, School of Law,
2014.

2. https://medium.com/@anil.ozenn/jetson-nano-vs-raspberry-pi%CC%87-4-
b1f6fbf5a00e

3. https://'www.youtube.com/watch?v=0k7ipkU6gHw&ab channel=CBS8SanDiego

Al

1828
Reference

O

Replacement of the Backbone Network

e Computational complexity and parameter storage
have a negative impact on the speed of CNN networks
which can be extremely slow when running on
computational- and power constrained devices.

e The current state-of-the-art lightweight network
ShuffleNetV2 is an improved version based on
ShuffleNet. ShuffleNetV2 is faster and more accurate
than most other networks for the same complexity of
inference. Hence, it is ideal for replacing the ordinary
YOLOV5 backbone network.

Al

1828
Backup slides 24 @

The selection process of the Backbone

We try to replace the backbone feature extraction network with the lighter

ShuffleNetV2 network to achieve a lightweight network model that balances speed and
accuracy.

Backbone mAP

cspdarknet

shufflenetv2 -2.1%

mobilenetv2 -3.8%

ghostnet -1.2%

https://blog.csdn.net/hexiao260/article/details/124915149

This blog documents the process of deploying the target detection algorithm to an embedded device (jetson
nano) and some modification strategies to lighten and improve the accuracy of the YOLOv4 algorithm.

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design https://arxiv.org/abs/1807.11164

Al

1828
Backup slides 25 @

YOLOvV5 Algorithm

BottleNeckCSP ' Concat
|

UpSample |

Convix1 |

BottleNeckCSP

BouleNéckCSP Concat
UpSample |
Convix1 |
SF—;P . BottleNeckCSP

CSP _ Cross Stage Partial Network

SPP Spatial Pyramid Pooling

i. Conv

BottleNeckCSP. Convix1
_CUrwIEIJ_XB S2 i
Concat
BonleNéckCSP . Conv1x1
Conv3x3 S2

Concat

BottleNeckCSP Conv1x1

Convolutional Layer

Concat | Concatenate Function

https://www.analyticsvidhya.com/blog/2021/12/how-to-use-yolo-v5-object-
detection-algorithm-for-custom-object-detection-an-example-use-case/

Backup slides

As the current state-of-
the-art deep learning
target detection
algorithm, YOLOV5, has
gathered a large number
of tricks, but there is still
room for improvement
and enhancement, and
different improvement
methods can be used for
the detection difficulties
of specific application
scenarios.

The next section will focus
on how we made
improvements to YOLOvS
in detail.

Al

1828
s @

Change the backbone (1/2)

class ShuffleNetV2_InvertedResidual(nn.Module}:

def _tntt_(First step is to modify common.py and add
the ShuffleNetV2 module.

oup: int,
stride: int
)} -» None:
super(ShuffleNetV2_InvertedResidual, self)._ init_ ()

if not (1 <= stride <= 3):
raise ValueError('illegal stride value')
self.stride = stride

branch_features = oup // 2

if self.stride » 1:
self.branchl = nn.Segquential(
self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
nn.BatchNorm2d{inp),
nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=e, bias=False),
nn.BatchNorm2d{branch_features),
nn.ReLU({inplace=True),
)
else:

self.branchl = nn.Sequential()

self.branch2 = nn.Seguential(
nn.Conv2d(inp if (self.stride » 1) else branch_features,
branch_features, kernel size=1, stride=1, padding=8, bias=False),
nn.BatchNorm2d (branch_features),
nn.RelLU{inplace=True),
self.depthwise_conv(branch_features, branch_features, kernel size=3, stride=self.stride, padding=1),
nn.BatchNorm2d (branch_features),
nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=8, bias=False),
nn.BatchNorm2d (branch_features),

nn.ReLU(inplace=True),

) Az

1828

Backup slides 27

Change the backbone (2/2)
Step 2: Register the module ShuffleNetV2 in yolo.py.

If m in [Conv,MobileNetV3 InvertedResidual,ShuffleNetV2_InvertedResidual]

Step 3: Modify the yaml file

1 | backbone:

2

3 [[-1, 1, Focus, [64, 3]],

4 [-1, 1, ShuffleNetv2 InvertedResidual, [128, 2]],

5 [-1, 3, ShuffleNetv2 InvertedResidual, [128, 1]],

6 [-1, 1, ShuffleNetVv2 InvertedResidual, [256, 2]],

7 [-1, 7, ShuffleNetV2 InvertedResidual, [256, 1]],

8 [-1, 1, ShuffleNetv2 InvertedResidual, [512, 2]],

9 [-1, 3, ShuffleNetv2 InvertedResidual, [512, 1]],

10]
NZ
1828

Backup slides 28

Deployment on Raspberry Pi Platform

Onmxruntime -'p -'p Hardware

Advanced
Scripting
Languages
TensorRT
Runtime
onnx expression Openvino

e To achieve running deep learning algorithms on Raspberry Pi in real time, we transform
the PyTorch model obtained after the training of the improved Yolov5 algorithm into the
ONNX cross-frame model intermediate expression model.

e The quantized model is then run in the onnxruntime framework for testing the
performance of the fire detection algorithm.

e After completing the evaluation, the onnxruntime framework and the completed
guantization model are deployed to the Raspberry Pi 4B to run the fire detection
algorithm. N2

1828
Backup slides 29 @

	Slide Number 1
	Overview
	Comparison of Single Board Computers (SBCs)
	Benchmarks
	Is the Jetson nano always the better choice?
	Relative Works
	Proposed optimization Framework
	Network Architecture
	Network Pruning
	Sparse training and pruning preparation
	Pruning process and Fine-tuning of the pruned model
	Hardware Acceleration
	Dataset
	Comparison of models‘ performances on Prediction
	Analysis of the model pruning results
	Network Structure Comparison
	Overclocking Performance Comparison
	Detection results from the Comparison Experiment
	Detection Results on Raspberry Pi Platform
	Video input Results for testing the model performance
	Conclusion
	Questions
	Reference
	Replacement of the Backbone Network
	The selection process of the Backbone
	YOLOv5 Algorithm
	Change the backbone (1/2)
	Change the backbone (2/2)
	Deployment on Raspberry Pi Platform

